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Abstract

We explore equivariant dynamics under the symmetric group SN of all permu-
tations of N elements. Specifically we study cubic vector fields which commute
with the standard real (N − 1)-dimensional irreducible representation of SN .

All stationary solutions are cluster solutions of up to three clusters. The resulting
global dynamics is of gradient type: all bounded solutions are cluster equilibria
and heteroclinic orbits between them. In the limit of large N , we present a
detailed analysis of the web of heteroclinic orbits among the plethora of 2-cluster
equilibria. Our focus is on the global dynamics of 3-cluster solutions with one
rebel cluster of small size. These solutions describe slow relative growth and
decay of 2-cluster states.

Applications include oscillators with all-to-all coupling and electrochemistry. For
illustration we consider synchronization clusters among N Stuart-Landau oscil-
lators with complex linear global coupling.
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1 Introduction

Networks of identical oscillators with global all-to-all coupling are a ubiquitous source
of dynamical systems which are equivariant under the symmetric groupSN of all per-
mutations of N elements {1, . . . , N}.

In section 7 below, we address the specific example of coupled Stuart-Land oscillators.
See also the companion paper [KHK19]. We will eliminate a global averaged phase
oscillation. Near the trivial periodic solution of total synchrony, we consider loss of
synchrony, and of stability, by bifurcation at a zero transverse eigenvalue. We reduce
the complex ODE dynamics from CN = R2N to a local center manifold of real dimension
N − 1. In particular we study the resulting reduced dynamics of 2-cluster solutions
and their heteroclinic transitions, up to and including third order. Our main tool will
be equivariance under the permutation group SN .

For a general background on dynamics and equivariance see for example [GoSt86,
GoSt02, GuHo83, Van82]. For a background on SN -equivariance see [Elm01, GoSt02,
SEC03].

Permutations π ∈ SN act linearly on vectors x ∈ X := RN by permutations of their
components xn. This linear representation of SN is given by

(1.1) (πx)n := xπ−1(n) .

Group invariants I : RN → R satisfy

(1.2) I(πx) = I(x)

for all π ∈ SN and all x ∈ RN , by definition. The ring of polynomial SN invariants I
is freely generated by the power sums

(1.3) pm :=
N∑
n=1

xmn ,

for m = 1, . . . , N . We may subsume the case of constant I as m = 0.

Equivariant vector fields f : RN → RN , here under the group SN , commute with the
linear group action:

(1.4) f(πx) = πf(x) ,

for all π ∈ SN and all x ∈ RN . For Lipschitz continuous f , the solutions x = x(t) of
the associated ordinary differential equation (ODE)

(1.5) ẋ = f(x)

are unique. Therefore the equivariance condition (1.4) means, equivalently, that πx(t)
is a solution of (1.5), whenever x(t) itself is a solution.
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One example of group equivariant vector fields f(x) are the negative gradients

(1.6) fn(x) := −∂n I(x)

of group invariants I. Here ∂n denotes the partial derivative with respect to xn, for
n = 1, . . . , N.

The consequences of a gradient structure (1.6) are striking, even without any group
invariance. Stationary solutions, alias equilibria f(x) = 0 of the ODE (1.5), become
critical points ∇I(x) = −f(x) = 0. The energy, or Lyapunov function, I(x(t)) de-
creases strictly with time t, along any nonstationary solution x(t). In particular, any
solution x(t) which is bounded for all real times −∞ < t < +∞ is heteroclinic between
stationary solutions, i.e. x(t) becomes stationary for t → ±∞. The energy I at the
target equilibrium (or equilibria), for t → +∞, is always strictly lower than at the
source, i.e. for t→ −∞.

Note that the linear zero sum space

(1.7) X0 := {x ∈ X | p1 := x1 + . . .+ xN = 0}

is an (N − 1)-dimensional linear subspace of X = RN which is invariant under the
action (1.1) of SN . The standard representation of SN on X0 is given by the restriction
of the linear representation (1.1) to X0. That representation is irreducible: there does
not exist any nontrivial proper subspace of X0 which would also be invariant under all
SN .

The following cubic SN -equivariant vector field, with arbitrary real parameters λ and
c, is the main object of our present study

(1.8) ẋn = fn(x) := (λ+ c · 〈x2〉)xn + x̃2n + x̃3n .

Here we use the abbreviations

(1.9) 〈xm〉 := 1
N
pm(x), x̃mn := xmn − 〈xm〉

for the averages and the offsets of m-th powers. It is a simple, but useful, exercise
to check that the zero sum space X0 is indeed invariant, not only under the linear
action (1.1) of the group SN but also under the nonlinear dynamics of (1.8). Indeed
〈x〉 = 〈x̃mn 〉 = 0.

It turns out that, up to scaling and possible time-reversal, the ODE (1.8) on X0 rep-
resents the most general cubic vector field which is equivariant under the standard
representation (1.1), (1.7); see [GoSt02], 2.4–2.7. A much more detailed source, which
is difficult to obtain, is the thesis [Elm01].

To derive (1.8) from these results we first recall that all SN -equivariant polynomial
vector fields f of the standard representation on X0 , up to and including order three,
are in fact gradients (1.6) of polynomial invariants I up to order four. In the notation
(1.9), this provides the general form

(1.10) ẋn = fn(x) = λxn + Ax̃2n +Bx̃3n + C〈x2〉xn
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of (1.8). For A,B 6= 0, indeed, linear rescalings t → τt, xn → σxn amount to the
replacements

(1.11) λ→ τλ, A→ τσA, B → τσ2B, C → c := τσ2C .

Renaming τλ as λ, the choices σ = A/B, τ = B/A2 then lead to (1.8) with

(1.12) c := C/B .

Note that negative B, in particular, are associated with time reversal in (1.8).

The importance of the dynamics (1.8) reaches far beyond any direct interpretation as
a network of N identical scalar “cells” with all-to-all coupling via power sums. Indeed,
the bifurcation analysis of any fully permutation-symmetric network, at eigenvalue 0,
typically leads to irreducible eigenspaces. Beyond total synchrony x1 = . . . = xN ,
the standard representation on X0 provides the simplest interesting case. Any center
manifold reduction, and subsequent truncation to cubic terms will then lead to our
reference bifurcation problem (1.8) with one or the other value of the one remaining
coefficient c. See section 7 for an explicit example.

In fact, the cubic case (1.8) possesses a gradient structure (1.6). Indeed, fn(x) :=
−∂n I(x) holds on X0 , as required in (1.6), with the quartic polynomial

(1.13) −I(x) := (1
2
λ · p2 + 1

4N
c · p22) + (1

3
p3 − 1

N
p1p2) + (1

4
p4 − 1

N
p1p3) .

Here we have used p1 = 0 on X0 .

Our main results on the bifurcation diagrams of (1.8), with respect to the bifurcation
parameter λ, are presented and discussed in section 6. We distinguish seven zones of
qualitatively different global heteroclinic dynamics. The diagrams are distinguished by
seven parameter ranges for the cubic coefficient c.

The remaining sections are organized as follows.

In section 2 we study 3-cluster solutions, i.e. solutions x(t) of our reference ODE (1.8)
which feature at most three different values of the components xn . More generally, an
M-cluster features at most M < N values

(1.14) {x1, . . . , xN} = {ξ1, . . . , ξM} .

Note how M -clusters degenerate to M ′-clusters, for some M ′ < M , when some of the
ξ-components still coincide.

As Kuramoto noticed long ago [NK95], all stationary solutions of (1.8) are (at most)
3-clusters. The reason is simple: any stationary component ξ = ξk = xn must satisfy
the same cubic equation

(1.15) 0 = fn(x) = (λ+ c · 1
N
p2)ξ + (ξ2 − 1

N
p2) + (ξ3 − 1

N
p3) ,

with the same coefficients c, λ, p2, p3 . This admits at most three distinct cluster values
ξ = ξ1, ξ2, ξ3 .

3



We aim at the dynamics of certain 3-cluster solutions which become heteroclinic be-
tween 2-cluster equilibria. In section 2 we simplify this task as follows. For k = 1, 2, 3,
letNk count the number of components n which satisfy xn = ξk ; noteN1+N2+N3 = N .
We then pass to the limit N → ∞ of large clusters N1 + N3 with a remaining rebel
cluster N2 of uniformly bounded size; for example we may fix N2 = 1. Heteroclinic
orbits between 2-cluster equilibria are then characterized by

(1.16) ξ2(t)− ξ1(t)→ 0 or ξ3(t)− ξ2(t)→ 0 ,

for t→ ±∞.

In section 3 our heteroclinic objective gets simplified, in the limit N = ∞, by the
somewhat surprising appearance of a skew product structure over the scalar quantity
s(t) := (ξ3(t) − ξ1(t))/(α + 1). Here α := N1/N3 denotes the relative population
fraction of components in the large clusters. The gradient structure (1.13) leads to
asymptotically stationary s∗ ,

(1.17) s(t) := (ξ3(t)− ξ1(t))/(α + 1) −→ s∗ = const,

for t → ±∞. See section 4 for a detailed analysis of this dynamics, which drives the
skew product.

In section 5 we pass to the asymptotic states of stationary s = s∗ = const. In suitable
coordinates y = ξ2− ξ1 , this reduces our task to the discussion of a single scalar ODE

(1.18) ẏ = y(y − (α + 1)s∗)(y − ȳ(s∗))

on the real line; see (3.8), (5.2).

Rebel heteroclinic solutions between 2-clusters will easily be identified. Indeed, the 2-
cluster stationary solutions ξ2 = ξ1 and ξ2 = ξ3 correspond to the stationary solutions
y = 0 and (α+ 1)s∗ , respectively. At the crucial 3-cluster equilibrium ȳ(s∗), the small
rebel cluster ξ2(t) might get stuck in its transition between the two major clusters
ξ1, ξ3 . We call this phenomenon blocking of 2-cluster heteroclinicity.

We thus arrive at the alternative of 2-cluster heteroclinicity, versus blocking of hetero-
clinicity by a 3-cluster. The six critical parameters

(1.19) c = −2, −3
2
, −4

3
, −5

4
, −1, −1

2

mark transitions between qualitatively different bifurcation diagrams of our cubic ref-
erence equation (1.8). In section 6 we illustrate the resulting seven intermediate cases
by diagrams of the stationary 2-clusters in a plane (N1/N, s); see figures 6.1–6.8.

Each diagram is foliated by the parameters λ, as level curves, where such stationary
2-clusters appear. A transversality assumption suggests the heteroclinic dynamics, in
the non-blocking regions, to indicate a slow drift of the population fraction α, along
constant parameter levels λ, by successive transitions of small rebel population fractions
N2 between the major clusters. Contrary to standard intuition, these rebel transitions
do not always favor the larger cluster. The seven cases which we discuss in fact indicate
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how cluster dynamics is an exceedingly subtle phenomenon, even in our simplistic cubic
setting.

In section 7 we conclude with the promised application to clustering in Stuart-Landau
oscillators with global complex linear coupling.

So, where are the theorems? The present paper is a rather detailed case study of
SN -equivariant 3-cluster dynamics in the standard representation on X0 , as is. Our
main focus is the rebel dynamics among the plethora of coexisting 2-cluster solutions
of size ratios α = N1/N3 , for large N . One novelty is our unusual presentation of the
heteroclinic rebel dynamics as a formal flow on the level set diagrams λ = λ(α, s), in
section 5, where s = (ξ3 − ξ1)/(α + 1) measures asynchrony. All of section 6 can then
be read as a long theorem, which establishes the pairwise inequivalence of these formal
flows in the seven intervals

(1.20) c 6∈ {−2,−3
2
,−4

3
,−5

4
,−1,−1

2
} .

We conjecture, conversely, equivalence of the formal flows in each of the seven comple-
mentary intervals. Alas, we did not embark on the, more cumbersome than enlighten-
ing, proof of this somewhat academic question.

Acknowledgment. The first author gratefully acknowledges the deep inspiration by,
and hospitality of, his coauthors at München who initiated this work. Ian Stewart
personally provided us with a copy of the extensive thesis [Elm01], which saved us
quite some duplication of effort. Extensive corrections of ever so many revisions were
most diligently typeset by Patricia Habasescu. This work has also been supported by
the Deutsche Forschungsgemeinschaft, SFB910, project A4 “Spatio-Temporal Patterns:
Control, Delays, and Design”, and by KR1189/18 “Chimera States and Beyond”.

2 Cluster dynamics

Let ẋ = f(x), on the zero sum space x ∈ X0 , denote any vector field which is equiv-
ariant under the standard irreducible action of the symmetric group SN on X0. See
(1.1)–(1.5) and (1.7). The M -clusters are defined as those vectors x ∈ X0 which possess
at most M distinct components xn; see (1.14). After applying a suitable permutation
π ∈ SN to x if necessary, we may assume without loss of generality that the indices
are sorted as

(2.1) x1 = . . . = xN1 , . . . , xN1+...+NM−1+1 = . . . = xN .

We call Nk the size of cluster k, for k = 1, . . . ,M . In other words, x is fixed under
the direct product SN := SN1 × . . . × SNM

of permutation subgroups, where the first
factor SN1 acts on the first N1 components of x, and so on. Any other M -cluster is
fixed under a group suitably conjugate to SN.

By (1.4), the linear space of SN-fixed vectors x is invariant under the ODE flow of f . In
particular, nondegenerate M -clusters remain nondegenerate M -clusters, for all time.
Only for t→ ±∞, an M -cluster x(t) may possibly limit onto an M ′-cluster with fewer
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clusters, i.e. M ′ < M . Since any stationary solutions are at most 3-clusters, by (1.15),
this is precisely the situation which we plan to study, for M = 3 and M ′ = 2.

Specifically, consider the dynamics of any nondegenerate 3-cluster

(2.2) {x1, . . . , xn} = {ξ1, ξ2, ξ3}

in our reference ODE (1.8). Then the power sums pm of (1.3) become

(2.3) pm = N1ξ
m
1 +N2ξ

m
2 +N3ξ

m
3 .

The cluster sizes Nk ≥ 1, respectively, count the number of times the distinct values
ξk occur among the xn .

With these weighted power sums pm, the resulting dynamics of the ξk is of course given
by the ODE

(2.4) ξ̇k = (λ+ c · 1
N
p2)ξk + (ξ2k − 1

N
p2) + (ξ3k − 1

N
p3) ,

for k = 1, 2, 3. Here we have simply replaced xn by ξk , in (1.8).

Taking differences ξj − ξk of any two equations in (2.4) we obtain

(2.5) d
dt

(ξj − ξk) = (ξj − ξk)
(
λ+ c · 1

N
p2 + (ξj + ξk) + (ξ2j + ξjξk + ξ2k)

)
.

We now introduce the redundant scaled difference variables

(2.6) y1 :=
N3

N
(ξ2 − ξ1), y2 :=

N3

N
(ξ3 − ξ2), y3 :=

N3

N
(ξ1 − ξ3) = −(y1 + y2) .

The flow invariant zero sum space X0 of (1.7) becomes planar, in the variables ξk:

(2.7) 0 = p1 = N1ξ1 +N2ξ2 +N3ξ3 .

Therefore it is not surprising that we can invert the transformation from the redundant
coordinates (ξ1, ξ2, ξ3) on X0 to (y1, y2) ∈ R2 by

(2.8)

ξ1 = −(1 + N2

N3
)y1 −y2 ;

ξ2 = N1

N3
y1 −y2 ;

ξ3 = N1

N3
y1 +(N1

N3
+ N2

N3
)y2 .

In principle, this allows us to rewrite the 3-system (2.4), i.e. a planar system on X0, in
terms of the two new variables y1, y2. Since the general expressions are a little messy
we simplify this calculation for the limit N →∞ of large symmetric groups SN , in the
next section.
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3 The limit of large symmetric groups SN

As announced in the introduction, we now consider the SN -equivariant 3-cluster dy-
namics (2.4) of (1.8), in the limit of large N . Specifically, we assume that the cluster
size N2 remains small compared to N1 +N3 = N −N2 , i.e.

(3.1) N2/N → 0 , for N →∞ .

We consider a fixed finite asymptotic size ratio

(3.2) N1/N3 → α ∈ (0,∞)

of the two large clusters sizes N1 and N3, in the limit N → ∞. Note how (3.1) is
equivalent to N2/N3 → 0, and likewise to N2/N1 → 0, for N → ∞. We therefore call
the comparatively tiny cluster (N2, ξ2) the rebel cluster.

Inserting these limits into the transformation (2.8) above provides the simplified ex-
pressions

(3.3)

ξ1 = −y1 −y2 ;

ξ2 = αy1 −y2 ;

ξ3 = αy1 +αy2 .

In the above limit N → ∞, this allows us to rewrite the 3-cluster ODE (2.4) in the
still slightly unwieldy planar form

ẏ1 = y1

(
λ+ (α− 1)y1 − 2y2 + (α2 − α + 1)y21 + 3(1− α)y1y2 + 3y22 + αc(y1 + y2)

2
)

(3.4)

ẏ2 = y2

(
λ+ 2αy1 + (α− 1)y2 + 3α2y21 + 3α(α− 1)y1y2 + (α2 − α + 1)y22 + αc(y1 + y2)

2
)

(3.5)

Just for academic completeness – or so it seems at first – let us also write the resulting
ODE for the sum

(3.6) s := y1 + y2 = −y3 = (ξ3 − ξ1)/(α + 1)

which redundantly appears in (2.6):

(3.7) ṡ = s
(
λ+ (α− 1)s+ qs2

)
; q := α2 + (c− 1)α + 1 .

This is a scalar ODE for the sum s alone. In particular, bounded solutions s(t) converge
to some equilibria s ≡ s∗ of (3.7) for t→ ±∞ , respectively. Substitution of y2 = s−y1
in (3.4) provides the complementing ODE

(3.8) ẏ1 = (α + 1)2 y1 (y1 − s) (y1 − ȳ1(s)) + y1ṡ/s .

Here we have abbreviated

(3.9) ȳ1(s) := (α + 1)−1((2− α)s− 1) .

The polynomial ṡ/s abbreviates the quadratic parenthesis of (3.7).
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In conclusion, we observe a skew product structure, in the limit N → of two large
clusters N1, N3, and one comparatively small cluster N2. Indeed the two ODEs (3.7)
and (3.8) identify the asymptotic 3-cluster dynamics (2.4) in the zero sum subspace
X0 of (2.7) as a system where the autonomous dynamics (3.7) of s drives the scalar
dynamics (3.8) of y1 .

Perhaps this structure of our restricted 3-cluster problem should not surprise us, after
all. In fact, (3.7) describes the dynamics s of the two large clusters ξ1, ξ3 which is
not affected by the comparatively small number N2 of rebels ξ2 . Ignoring N2 , indeed,
the zero sum condition (2.7) implies conservation of N1ξ1 + N3ξ3 = 0, and hence a
one-dimensional autonomous dynamics for the difference variable s = (ξ3− ξ1)/(α+ 1)
of (3.6). Because s = 0 indicates synchrony of the two large clusters, i.e. effectively
a one-cluster dynamics, we also call s the asynchrony variable. The rebel dynamics
(3.8) describes the remaining deviation y1 = (ξ2 − ξ1)/(α + 1) of the rebels ξ2 in the
small cluster (N2, ξ2) from the state ξ1 of the large cluster (N1, ξ1), once the two large
clusters (N1, ξ1), (N3, ξ3) have reached a status quo equilibrium s = s∗ according to
their size ratio α = N1/N3 .

4 Two-cluster dynamics

In this section we discuss the autonomous two-cluster dynamics. By (3.7), we only
have to study the asynchrony sum s = (ξ3− ξ1)/(α+ 1) = y1 + y2 defined in (3.6), i.e.

(4.1) ṡ = s
(
λ+ (α− 1)s+ qs2

)
.

Here the asymptotic ratio 0 < α = limN1/N3 < ∞ of the sizes N1 and N3 of the two
large clusters, for N → ∞, is a fixed parameter, in addition to the cubic coefficient c
and the bifurcation parameter λ. Also from (3.7), we recall the abbreviation

(4.2) q = q(α) := α2 + (c− 1)α + 1

for the quadratic coefficient q.

The scalar ODE (4.1) is cubic in s with trivial equilibrium s = 0. The remaining
equilibria s = s∗ are characterized by the vanishing quadratic parenthesis in (4.1) at
bifurcation parameters λ, i.e. at parameters

(4.3) λ = λ(α, s) := s(1− α− qs) .

Explicit and elementary calculations reveal the standard bifurcation diagrams with
respect to λ, for fixed parameters α and c. For example we obtain

ṡ = s (λ− s(1− s)) at α = 0 , q = 1;(4.4)

ṡ = s
(
λ+ (c+ 1)s2

)
at α = 1, q = c+ 1 .(4.5)

We discuss three cases depending on the sign of c + 1, below. See section 6 for many
additional examples.
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Figure 4.1: Global equilibrium bifurcation diagrams of the ODE flow (4.1) for the compactified
asynchrony s defined in (3.6), with c = −1.3 < −1; see subsection 4.2. The compactified horizontal
λ-axis (black) represents the one-cluster case of synchrony s = 0, for the large clusters. All 2-cluster
bifurcation curves coexist, in the same phase space x ∈ X0 , for realizable ratios α = N1/N3 ∈ [0, 1].
The color shading indicates fixed values of α increasing from α = 0 (yellow) to α = 1 (blue), along each
bifurcation curve in the (λ, s) plane. The quadratic coefficient q in (4.3) changes sign at α = αc ∈ (0, 1).
The redundant cases 1/α = N3/N1 ∈ (0, 1) are omitted. Red: the two branches of extreme saddle-
node values of (λ, s) = (λminmax(α), sminmax(α)) on each bifurcation curve; see (4.10),(4.11). Positive
q, for 0 ≤ α < αc, imply positive sminmax. Negative q, for αc < α ≤ 1, imply sminmax < 0. In-
/stability of each stationary solution s∗ can easily be derived from exchange of stability, at λ = 0 and
the saddle-nodes, or explicitly from (4.1).

Figure 4.2: The bifurcation diagram of figure 4.1, rotated such that the cluster ratios α ∈ [0, 1] can
be visualized as a second “parameter”. Color coding as before, but with yellow in front and blue in
the background. Note the red fold curves, for the projection into the horizontal plane (arctanλ, α).
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4.1 The degenerate transition case c = −1

In this case, the quadratic coefficient q = (α − 1)2 is nonnegative and vanishes at
α = 1, only. Note how the s-dynamics becomes linear, ṡ = λs, at α = 1; see (4.5). For
0 ≤ α < 1 we my rescale s to s̃ := (1− α)s and obtain the α independent ODE

(4.6) ˙̃s = s̃
(
λ− s̃+ s̃2

)
.

which coincides with the case α = 0 of (4.4).

Stability of the stationary solutions s∗ = s̃∗/(1 − α) for any 0 ≤ α < 1 is easily
determined. For λ < 1/4, we have three stationary solutions s̃∗. Since

(4.7) ṡ = qs3 + . . .

with q = (α−1)2 > 0, the top and bottom equilibrium are unstable, while the interme-
diate equilibrium is stable. At λ = 1/4, of course, we obtain a saddle-node equilibrium
s∗ = 1

2
(1−α)−1. For λ > 1/4 only the trivial stationary solution s∗ = 0 remains, which

is unstable for all λ > 0.

4.2 The case c < −1

In this case, the quadratic coefficient q = q(α) in (4.1), (4.2) changes sign strictly, at

(4.8) α = αc := 1
2
(1− c−

√
(1− c)2 − 4) ∈ (0, 1) .

Specifically q > 0, for 0 ≤ α < αc, and q < 0, for αc < α ≤ 1. Interchanging N1 with
N3 , we omit the redundant cases α = N1/N3 > 1, at first.

For an example we fix the cubic coefficient c = −1.3 . See figure 4.1 for the resulting
bifurcation diagrams of (4.1). The nontrivial stationary solutions s = s∗ at fixed λ = λ∗
and size ratio α = α∗ appear as the intersections s = s∗ of the bifurcation curve for
parameter α with the vertical line λ = λ∗, in this plot. The size ratio α = N1/N3

may be considered as a fixed parameter, in any of the invariant cluster subspaces (2.1).
We therefore plot the bifurcation diagrams as a family of curves, parametrized over
discrete values α. Color coding is from yellow, at α = 0, to blue, at α = 1. Since all
these bifurcation diagrams coexist, in the large (N − 1)-dimensional phase space X0 ,
we superimpose all bifurcation curves in figure 4.1.

The less standard contour plot of figure 4.3 tracks the level sets of the parameter λ =
λ(α, s), as a function of 0 ≤ α = N1/N3 ≤ 1 (horizontal) and −π/2 < arctan s < π/2
(vertical), at which nontrivial stationary solutions s = s∗ occur; see (4.3). We use
arctan s again, rather than s itself, for compactification of the unbounded range of
s ∈ R. The level sets are in fact level curves because the only critical point F of λ,
located at (N1/N3 = 1 , s = 0), is a nondegenerate saddle. This accounts for the two
level curves of λ = 0, one solid black and one dotted yellow, which intersect at F. The
third level curve of λ = 0 emanates from the left boundary as a dotted yellow curve.
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Figure 4.3: Level curves of λ = λ(α, s) for nontrivial stationary solutions s = s∗ > 0 of the ODE
flow (4.1) with c = −1.3 < −1. Here α = N1/N3 is horizontal, and arctan s is plotted vertically.
Colors from yellow to blue indicate increasing values of −∞ < λ < +∞, this time. Note the black and
the two dotted yellow level curves of λ = 0 which intersect at the only critical point F of λ(α, s). In
particular, any level curve begins and terminates at the boundary, as described in the text. Another
example is the dashed yellow level curve of the value λ = 1/4. Restricted to the left vertical s-axis,
at α = 0, this is the maximal value of λ. As in figure 4.1, the two red curves indicate the values
s = sminmax(α) where saddle-node bifurcations occur at the levels λ = λminmax(α). Equivalently, they
indicate extremal values of α, on level curves of λ in that region. The region of stable equilibria s = s∗
is located between the two red curves.

Figure 4.4: The substitution N1 ↔ N3, y1 ↔ −y2 allows for a gluing identification s ↔ −s at the
right boundary α = N1/N3 = 1 of figure 4.3. The new horizontal axis N1/N = α/(α + 1) ∈ [0, 1]
therefore compactifies cluster ratios α ∈ [0,∞] and allows us to omit s < 0 as redundant. The break-
even point N1/N = 1/2, alias α = 1, of equal cluster size N1 = N3 is marked by a vertical dashed
white line. Again, the region of stable equilibria s = s∗ is located between the two red curves.
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Next we drop the assumption α = N1/N3 ≤ 1 and allow arbitrary sizes N1, N3 of the
two clusters. Without loss of generality, we may then label the large clusters (N1, ξ1)
and (N3, ξ3) such that the asynchrony

(4.9) s = (ξ3 − ξ1)/(α + 1) > 0

is strictly positive. This allows us to discard the redundantly symmetric case s < 0, a
priori. Caution is required because our choice admits any cluster ratio α = N1/N3 ∈
(0,∞). To represent α, we therefore use the percentage N1/N = α/(α + 1) ∈ [0, 1] as
a compactification of the horizontal axis, in figure 4.4 and all subsequent level plots of
the same style. The important break-even point α = N1/N3 = 1 of equal cluster parity
N1 = N3 , alias N1/N = 1/2, is marked by a thin white vertical line.

Each level curve of λ(α, s) = λ terminates at two points on the boundary of figure 4.3.
Any termination at the upper or lower boundary s = ±∞ must occur at α = αc , where
q = 0. Indeed, λ = −qs2 + . . . in (4.3) implies limits λ = −(sign q) · ∞, for s = ±∞
and q 6= 0 . At the left and right boundaries α = 0 and α = 1 we encounter the values
λ(0, s) = s(1− s) and λ(1, s) = −(c+ 1)s2 , respectively. See (4.4), (4.5).

Along each level curve λ(α, s) = λ∗ , we may also determine the local extrema of α,
i.e. the vertical tangents of the level curves. Equivalently, these are the local extrema
of λ(α, s), for any fixed α = α∗ . An elementary calculation shows that these curves
are given by the level sets of 0 = ∂sλ(α, s) = 1− α− 2 qs, i.e.

s = sminmax(α) := 1
2
(1− α)/q > 0 ,(4.10)

λ = λminmax(α) := λ(α, sminmax(α)) = 1
4
(1− α)2/q .(4.11)

These locations are marked in figures 4.1, 4.3, 4.4 as two red curves. Comparing (4.3)
and (4.10), the red curves of saddle-nodes occur at half the s-value of the nontrivial
dotted yellow level curve λ = 0, for each α.

In-/stability of each stationary solution s = s∗ can be derived easily from exchange of
stability, at λ = 0, or explicitly from (4.1). As in the previous subsection 4.1, positive
q = q(α) > 0 implies instability of the largest and smallest equilibria s∗ , and stability
of any intermediate s∗ , on each level curve λ and for each fixed α. This identifies the
region of s between the two red saddle-node curves s = sminmax(α) as the only region of
stable stationary solutions s = s∗ . We call such regions of α, s∗ where the equilibrium
s ≡ s∗ is stable an s-stable region. The s-unstable region consists of the two parts
below and above the two red saddle-node curves.

Negative sign q(α, c) < 0 in contrast, which only occurs for αc ≤ α ≤ 1/αc, indicates
stability of the largest and smallest equilibria s = s∗ , and instability of any intermediate
s∗ , there. In particular, this also identifies αc < α < 1/αc as the region where the
dynamics of 4.1 is dissipative, i.e. where solutions s(t) are attracted to a bounded
region in forward time.
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Figure 4.5: Bifurcation diagrams of the ODE flow (4.1) for the asynchrony s defined in (3.6) at
c = −0.75 > −1; see subsection 4.3. The quadratic coefficient q remains positive for all 0 ≤ α ≤ 1.
See figure 4.1 for colors and in-/stability of each stationary solution s∗ . Note the single red branch
of saddle-nodes at extremals λ = λminmax(α), according to (4.10),(4.11). Indeed q > 0 implies
λminmax > 0 and sminmax > 0.

4.3 The case c > −1

In this case, the quadratic coefficient q = q(α) in (4.1), (4.2) is strictly positive, for all
0 < α < ∞. Therefore our discussion follows the part of the previous subsection 4.2
for the case q > 0. For an explicit example we fix the cubic coefficient c = −0.75 . See
figure 4.5 for the resulting bifurcation diagrams of (4.1).

In the less standard contour plots of figures 4.6, 4.7, analogously to figures 4.3, 4.4,
we present the level curves of the parameter λ = λ(α, s). The only critical point of
λ is still the nondegenerate saddle F, with two associated level curves λ = 0 (solid
black and dotted yellow). This time, −∞ < λ ≤ 1/4 is bounded above, globally, as is
already visible from the bifurcation diagrams of figure 4.5. The maximal λ is attained
on the left boundary α = 0, at s = 1/2.

Each level curve terminates at two points on the boundary of figures 4.6, 4.7, as before.
Since λ = −∞ at s = +∞, this time, all terminations occur at the right and left
boundaries. In the left region, delimited by the black and yellow level curves of λ = 0,
both terminations are located on the left boundary. The maximal value of α, along
each of the interior level curves of 0 < λ < 1/4, occurs on the red curve of saddle-nodes,
of course. Again that red curve is located at half the s-value of the dotted yellow level
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Figure 4.6: Level curves of λ = λ(α, s) for nontrivial stationary solutions s = s∗ > 0 of the ODE flow
(4.1) with c = −0.75 > −1, in analogy to the case c = −1.3 of figure 4.3. See the legend there. Note
that −∞ < λ ≤ 1/4 is now bounded above. There are only two level curves for λ = 0, one black and
one dotted yellow. Again they intersect at the only critical point F of λ(α, s). The maximal values of
α, on level curves of λ, form a single red curve of saddle-node bifurcations, this time. See also figure
4.5. All level curves of λ still begin and terminate at the boundary, as described in the text. The
region of stable equilibria s = s∗ is located between the black horizontal axis and the red saddle-node
curve.

Figure 4.7: Glued version of figure 4.6. The horizontal axis is N1/N = α/(α+1), and s < 0 has been
omitted as redundant, analogously to the derivation of figure 4.4 from figure 4.3. The only stability
region of nontrivial equilibria s = s∗ > 0 is still confined between the black horizontal α-axis s = 0,
and the red saddle-node curve s = sminimax(α).
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curve λ = 0, for each α. Above the region delimited by the dotted yellow curve λ = 0,
in figure 4.7, level curves connect the two vertical boundaries α = 0 and α =∞.

In-/stability of each stationary solution s = s∗ > 0 can be derived easily, as before.
Because q > 0, the region of s between the black horizontal α-axis and the red saddle-
node curve s = sminmax(α) is the only s-stable region, for any 0 < α <∞.

5 Rebel dynamics and blocking

We address the remaining ODE for y := ξ2 − ξ1 = (α + 1)y1 next; see (2.6), (3.8). In
the previous section we have seen how the asynchrony variable s = (ξ3 − ξ1)/(α + 1)
tends to total 1-cluster synchrony s ≡ 0 of the two large clusters, or to a nontrivial
equilibrium s ≡ s∗ 6= 0, for t → ∞, where the two large clusters (N1, ξ1) and (N3, ξ3)
compete for the rebels ξ2 in size. In the present section, we study that remaining rebel
dynamics of (N2, ξ2), when the two large clusters have already equilibrated.

The synchrony case s ≡ 0 of large clusters leads to

(5.1) ẏ = y(λ+ y + y2)

for y = (α+ 1)y1 . To derive (5.1) we directly replace y2 = s− y1 = −y1 in (3.4), or we
formally replace ṡ/s by λ in (3.8) due to (3.7).

For λ > 1/4, we obtain global instability of the fully synchronous 1-cluster equilibrium
0 ≡ s = (ξ3 − ξ1)/(α + 1) towards rebels y = ξ2 − ξ1, which escape to ±∞. For
0 6= λ < 1/4, in contrast, we obtain a unique stable equilibrium y ≡ y∗ . The domain of
attraction is delimited by the remaining two linearly unstable equilibria, beyond which
rebels y escape to ±∞, respectively, as before. Only for λ < 0 we have stability of
y∗ = 0 against rebellion, in this sense. For 0 < λ < 1/4, where 0 > y∗ > −1/2, rebellion
can lead to the gradual formation of a tiny stable rebel cluster at y∗ = −1

2
(1−
√

1− 4λ),
at least as long as its tiny size N2 remains small compared to N ≈ N1 +N3. Also note
the presence of a linearly unstable rebel cluster at y ≡ −1

2
(1+
√

1− 4λ), for all λ < 1/4.

The 2-cluster case s ≡ s∗ 6= 0, where the two large clusters compete for the rebels
(N2, ξ2) , is much more interesting. From (4.9) we recall s > 0, without loss of generality.

Scaling (3.8), (3.9) to y := (α + 1)y1 = ξ2 − ξ1 again, we obtain the cubic ODE

ẏ = y (y − (α + 1)s) (y − ȳ(s)) ,(5.2)

ȳ(s) := (2− α)s− 1 .(5.3)

We repeat that s ≡ s∗ > 0 is constant here. In particular, the term ṡ/s from (3.8)
drops out in (5.2). The equilibrium y = 0 indicates ξ2 = ξ1 : the rebels ξ2 are at
the cluster (N1, ξ1). The equilibrium y1 = s, i.e. y = (α + 1)s, in contrast, indicates
ξ2 = ξ3 : the rebels are with the other cluster (N3, ξ3). Indeed, y1 = s is equivalent
to y2 = 0, by (3.6), and hence to ξ2 = ξ3, by (2.6). The third equilibrium y = ȳ(s)
denotes a 3-cluster equilibrium where, in general, the tiny rebel cluster achieves its own
equilibrium balance, holding out against both large clusters.
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Suppose a nonstationary solution y = y(t) of the scalar ODE (5.2) remains bounded for
all positive and negative times t ∈ R. Then y(t) is heteroclinic. Consider a heteroclinic
orbit of (5.2) from y = 0 to y = (α+ 1)s, as t increases from t = −∞ to t = +∞. This
means that rebels leave the cluster (N1, ξ1) in favor of the cluster (N3, ξ3 ). The discrete-
valued parameter α = N1/N3, along with N1/N = α/(α+ 1), becomes continuous and
real-valued in our asymptotics of large N → ∞. Even though α = N1/N3 is actually
constant, we indicate the above rebel migration by a magenta arrow towards smaller
N1/N , along the level curves of constant λ, in figures 5.2– 5.5 further below.

In the opposite direction, a heteroclinic orbit of (5.2) from y = (α + 1)s to y = 0
indicates how rebels leave the cluster (N3, ξ3) in favor of the cluster (N1, ξ1). We
indicate this migration in favor of N1 by an arrow towards larger N1/N , in figures 5.3
and 5.5.

The arrows on level curves of λ carry meaning beyond the merely formal level. For
large N < ∞, each such heteroclinic orbit amounts to a discrete step in the rational
value of α = N1/N3.

We illustrate this fundamental observation by numerical integration of Eq. (1.8) for
c = −1.3, λ = 0.18 and N = 32 units. As initial condition, a two cluster solution
x1 = · · · = xN1 = ξ1, xN1+1 = · · · = xN = ξ3 was chosen, with ξ1 and ξ3 as in
section 3. For N1 = 4, initially, this corresponds to an initial 2-cluster proportion
of N1/N = 0.125. We then perturb a single unit xn , n = N1 + 1, in cluster ξ3,
and integrate forward in time until the dynamics no longer changes. As a result, we
observe heteroclinic rebel dynamics, that is, the perturbed unit xn changes its cluster
affiliation from ξ3 to ξ1. In other words, N1 = 5, after the rebel transient. In Fig. 5.1 we
repeat this process, for ever increasing cluster sizes N1. Note the successive heteroclinic
transients of the rebels xn, from ξ3 down to ξ1 < ξ3. After 12 transients, of course, equal
cluster parity N1 = N2 = 16 is reached. After 15 transients, the dynamics enters a
blocking region and finally settles on a three cluster solution; see the bottom right part
of Fig. 5.1. At this stage, the third coexisting cluster at ξ2 < ξ3 near ξ1 < ξ2 consists of
just one single rebel element. This trajectory is also visualized in the (N1/N, s) plane
of Fig. 5.2, with the color coding corresponding to the rebel cluster color in Fig. 5.1.

For numerical integration, we employed the implicit Adams method provided by SciPy;
see [VG&al]. After each perturbation, we subtracted the mean of the ensemble to en-
sure the constraint p1 = 0 in the phase space X0 of (1.8). Note that by choosing initial
conditions in the 2-cluster subspace with just a single unit perturbed, we suppress tran-
sitions in which multiple units might change their cluster affiliation, and instabilities
that might break up the clusters altogether.

The direction of the heteroclinic transients partially determines the ordering, by de-
creasing energy or Lyapunov function I(x) of (1.13), of the two asymptotic large 2-
clusters. This would require a nontrivial calculation, otherwise. The transitivity of that
order, simply following the level curves of λ along our arrows, possesses a dynamic coun-
terpart. Assuming transversality of the stable and unstable manifolds of the target and
source stationary cluster solutions, respectively, along heteroclinic orbits, there also ex-
ists a direct heteroclinic connection between any two equilibria connected by a directed
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Figure 5.1: Trajectories obtained from numerical simulations of Eq. (1.8) for c = −1.3, λ = 0.18 and
N = 32 units. We consider 2-cluster solutions x1 = · · · = xN1 = ξ1, xN1+1 = · · · = xN = ξ3 with ξ1
and ξ3 as in section 3. Starting from N1 = 4 and n = N1 + 1, we apply a small random perturbation
to xn = ξ3 at a time indicated by the dashed vertical lines. We then integrate the system with rebel
xn 6= ξ1 , ξ3, until the dynamics settles again. See the colored rebel transients of xn from ξ3 (top) to
ξ1 (bottom), along which the rebel xn changes its cluster affiliation. We repeat this process until the
system enters a blocking region because a stationary 3-cluster state is initiated by the rebel at xn = ξ2
(blue) between ξ1 and ξ3; see the last state shown in the figure.

Figure 5.2: The rebel transients of figure 5.1 are inserted into the diagram of λ-levels from figure
4.4, within the level curve of λ = 0.18. The color coding of the rebel transients is the same as above.
A magenta arrow indicates the drift direction of N1/N , induced by the heteroclinic rebel transients.
For further discussion of the yellow curves, and of the dark shaded blocking region where stationary
rebel 3-clusters bifurcate and persist, we refer to figure 5.3 below.
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sequence of heteroclinic orbits, for the same parameter λ. This dynamic transitivity is
a consequence of the so-called λ-Lemma; see for example [PadM82]. The useful prop-
erty of transversality of invariant manifolds, often called the Morse or Morse-Smale
property, is generic for general vector fields, by the Kupka-Smale theorem. For our
much more restrictive class of equivariant vector fields (1.8), however, transversality is
a much more delicate assumption – somewhat beyond the scope of our present paper.

Heteroclinic orbits between y = 0 and y = (α + 1)s are blocked when the third rebel
equilibrium y = ȳ(s) of (5.2) is located strictly between y = 0 and y = (α + 1)s.
Therefore we call the equilibrium ȳ(s) in (5.2), (5.3) blocking, if 0 < y(s) < (α + 1)s.
The blocking regions, in contour plots 5.2–5.5, consist of those (N1/N, s) for which
the equilibrium ȳ(s) blocks rebel heteroclinic orbits between the two large competing
clusters. Instead the rebels are ready to form a tiny third cluster between the large
ones, which may turn out stable, destabilizing the larger competitors, or unstable,
stabilizing the 2-cluster status quo.

The blocking boundaries of the blocking region are characterized by those values of
(α, s) for which ȳ(s) = 0 or ȳ(s) = (α + 1)s, respectively. For the blocking boundary
ȳ(s) = 0 we obtain the graphs

s = s0(α) :=
1

2− α
> 0 ,(5.4)

λ = λ0(α) :=
1− (c+ 2)α

(2− α)2
.(5.5)

Indeed (5.5) follows from (5.4) and (4.3). The blocking boundary ȳ(s) = (α + 1)s is
analogously characterized by

s = s1(α) :=
1

1− 2α
> 0 ,(5.6)

λ = λ1(α) := α
α− (c+ 2)

(1− 2α)2
.(5.7)

See figures 5.2–5.5, where we have added the two blocking boundaries as solid black
curves to the corresponding previous plots 4.4, 4.7 for c = −1.3,−0.75. The blocking
boundaries are easily distinguished by their values at α = 0 : s0 = 1/2, λ0 = 1/4
versus s1 = 1, λ1 = 0. Also note the poles at α = 2, N1/N = 2/3 and at α =
1/2, N1/N = 1/3, respectively.

It is remarkable that the rebel dynamics (5.2) does not depend on the cubic coefficient c,
at all. In particular the blocking regions in the (α, s)-plane, and their black boundaries
(5.4), (5.6), coincide in figures 5.2–5.5. Any differences arise from the configuration of
level curves λ = λ(α, s), which certainly depend on c via (4.3); see also (5.5) and (5.7).

We determine the blocking regions and the direction of heteroclinic rebel dynamics in
(5.2) next. Off the black blocking boundaries (5.4), (5.6), we sort the three stationary
solutions y = 0, (α + 1)s, ȳ(s) as η1 < η2 < η3, i.e.

(5.8) {0, (α + 1)s, ȳ(s)} = {η1, η2, η3} .
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Figure 5.3: Level curves of λ = λ(α, s) for nontrivial stationary solutions s = s∗ > 0 of the ODE
flow (4.1) with c = −1.3 < −1, in coordinates (N1/N, arctan s). See figure 4.4 for axes and color
codings. The two solid black curves mark the boundaries of the blocking region. The new dotdashed
yellow curve between C and E marks the level λ = λ(E) = −(c + 1). See figure 5.4 for a zoom into
that region and a discussion of the tangency point T. The dashed yellow curve λ = 1/4 indicates
the λ-level where one solid black blocking boundary terminates at N1/N = 0. The other solid black
blocking boundary left terminates at the level λ = 0 indicated by the previous dotted yellow curve.
The blocking region is located between the two solid black boundaries and is indicated by a darker
shading. Outside the shaded blocking region, magenta arrows along the level curves of λ = λ(α, s)
to the right, i.e. towards larger cluster fractions N1/N3 , indicate heteroclinic rebel orbits from the
cluster N3 to the cluster N1 . Similarly, magenta arrows to the left, i.e. towards smaller fractions
N1/N , indicate heteroclinic rebel orbits in the opposite direction, favoring the cluster N3 . Note how
directions change across the blocking region and across the red saddle-node curves. Magenta arrows
are drawn solid, in the s-stable region, and are drawn dashed in the s-unstable region; see also figures
4.4 and 4.7. In the s-stable region, for example, rebellions from N3 to any N1 < N3 will cause N1

to grow beyond equal parity N1 = N3 , across the white line N1/N = 1/2 between E and F: from
minority to majority. Growth of N1 only terminates at the solid black blocking boundary, between A
and B. See text for further details.

Figure 5.4: Zoom of figure 5.3. Note the tangency point T, further enlarged in the insert. Level
curves of λ are tangent to the blocking boundary at T, from inside the dark shaded blocking region.
In particular, level curves which emanate from the blocking boundary, between C and T, terminate
on the blocking boundary, between the break-even point E and the tangency T.
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Figure 5.5: Level curves of λ = λ(α, s) as in figure 5.3, but for c = −0.75 > −1. The basic locations
of the s-stable and the shaded y-blocking regions look similar, at first sight, but there are subtle
differences in detail. See text.

Then ẏ = (y−η1)(y−η2)(y−η3) implies instability of the smallest and largest equilibria
y = η1, η3, and stability of the intermediate equilibrium y = η2. The two heteroclinic
orbits run from η1 and η3 to η2, respectively.

For s > 0, i.e. 0 < (α + 1)s, this leaves us with the following three cases for the third
equilibrium ȳ(s).

Region 1: ȳ(s) = η1.
This case is equivalent to (2 − α)s − 1 = ȳ(s) = η1 < 0 = η2 < η3 = (α + 1)s,
i.e. s > 0 is between the horizontal axis and the lower solid black blocking curve
s0 of (5.4). Then blocking does not occur, and heteroclinic rebel migration y =
ξ2 − ξ1 runs from y = (α + 1)s = η3 down to y = 0 = η2, i.e. from the cluster
(N3, ξ3) towards the cluster (N1, ξ1) . We indicate this migration by a magenta
arrow towards larger α and N1/N , in figures 5.3– 5.5.

Region 2 (blocking): ȳ(s) = η2.
Then η1 = 0 < ȳ(s) = (2 − α)s − 1 = η2 < η3 = (α + 1)s, i.e. s is between
the two black blocking curves. Blocking occurs, and heteroclinic rebel migration
from either large cluster gets stuck at the intermediate equilibrium y = ȳ(s) = η2.
The resulting tiny new stationary rebel cluster at that 3-cluster equilibrium may
in fact grow, at the expense of both large clusters, and with indefinite effects
on their proportion α. Figures 5.2–5.5 indicate this blocking region by a darker
shading.

Region 3: ȳ(s) = η3.
Then (2 − α)s − 1 = ȳ(s) = η3 > η2 = (α + 1)s > η1 = 0, i.e. s is above the
upper red curve, and hence 0 ≤ α < 1/2, 0 ≤ N1/N < 1/3. Blocking does
not occur, and heteroclinic rebel migration runs from y = 0 = η1 upwards to
y = (α+ 1)s = η2, i.e. from the smaller cluster (N1, ξ1) towards the larger cluster
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(N3, ξ3): from minority to majority. We indicate this migration by a magenta
arrow towards smaller α, in figures 5.3 and 5.5.

For example consider the s-stable region in figure 5.3, i.e. for c = −1.3. The region is
located in the wedge between the lower black blocking boundary s0 and the right red
saddle-node curve. All level curves of λ = λ(α, s) in that region are oriented, along the
solid magenta arrows, towards their termination at the black blocking boundary s0 to
the left of D. Rebel heteroclinic migration towards the cluster N1 erodes the cluster
N3 , until eventual termination of the 2-cluster regime at the blocking boundary s0 .

In fact, consider the s-stable 2-cluster states, which start out below the dashed yellow
level curve λ = 1/4 from a minority cluster N1 < N3 , i.e. from the left of the white
line N1/N = 1

2
of equal parity N1 = N3 . All these initial conditions will be prone to

heteroclinic rebellion from the cluster N3 to N1 , across the white line and well into the
region N1 > N3 : from minority to majority, across equal cluster size.

In figure 5.5 in contrast, at c = −0.75, the red saddle-node boundary confines the
s-stable subregion of region 1 to the left of the white line N1/N = 1

2
, i.e. to N1 < N3 .

Therefore heteroclinic rebel orbits starting in the s-stable region cannot achieve equal
parity, anymore. Instead, they face one of two possibilities:

a) termination by blocking at the black blocking curve s0 , or

b) termination at the red saddle-node curve.

Migration from the larger cluster N3 to N1 gets stuck by an emerging tiny third rebel
cluster, in case (a). The blocking 3-cluster equilibrium y = ȳ(s) & 0 emerges near the
smaller cluster y = 0, across the black blocking boundary s = s0(α). In case (b), any
further increase of N1 stops at some status quo uneven 2-cluster with N1 < N3 . The
cause is the saddle-node termination of the 2-cluster. Indeed, the value of α = N1/N3

at the saddle-node intersection is the maximal available value of α for any stationary
2-cluster, at that particular level of λ.

For later reference we also determine the regions of the cubic parameter c for which
the black blocking boundaries s = s0(α) and s = s1(α), respectively, intersect with
specific relevant dotted or dashed level curves of λ, or with the red saddle-node curves
s = sminmax(α).

Specifically we claim the following four intersection points A–D of the lower black
blocking boundary s0(α) = 1/(2− α):

A := s0 ∩ {λ = 0}, 0 < α < 2 ⇐⇒ − 3
2
< c < +∞;(5.9)

B := s0 ∩ {λ = 1
4
}, 0 < α < 2 ⇐⇒ − 3

2
< c < −1;(5.10)

C := s0 ∩ {λ = −(c+ 1)}, 0 < α < 2 ⇐⇒ − 3
2
< c < −5

4
;(5.11)

D := s0 ∩ sminmax , 0 < α < 2 ⇐⇒ − 3
2
< c < −1

2
.(5.12)

We also claim the following intersection D′ of the upper black blocking boundary
s1(α) = 1/(1− 2α) > 0 :

(5.13) D′ := s1 ∩ sminmax , 0 < α < 1
2

⇐⇒ −∞ < c < −3
2
.
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In addition, we mark the following two intersections with the white line N1/N =
α/(α + 1) = 1/2 of equal parity α = N1/N3 = 1:

(5.14)
E = s0 ∩ {α = 1} , λ = −(c+ 1);

F = (α = 1, s = 0) , λ = 0 .

The elementary proofs all follow the same pattern. We first insert s0 = 1/(2− α) > 0
from (5.4) and the values of λ in (4.3) or the expression (4.10) for sminmax , as required.
For the specified λ-values, we may alternatively invoke (5.5), (5.7). The resulting linear
equation for c provides the following explicit expressions:

A = s0 ∩ {λ = 0} : c = (1− 2α)/α , α = 1/(c+ 2) ;(5.15)

B = s0 ∩ {λ = 1
4
} : c = −1

4
α− 1 , α = −4(c+ 1) ;(5.16)

C = s0 ∩ {λ = −(c+ 1)} : c = −(α− 5)/(α− 4) , α = (4c+ 5)/(c+ 1) ;(5.17)

D = s0 ∩ sminmax : c = −(α + 1)/2 ,
α = −2c− 1 ,

λ = (1 + c)/(3 + 2c) .
(5.18)

This proves the four claims (5.9)–(5.12) on s0. For s1 = 1/(1 − 2α) from (5.6), we
obtain analogously

(5.19) D′ = s1∩sminmax : c = −1
2
(α+1)/α ,

α = −1/(2c+ 1) ,

λ = (1 + c)/(3 + 2c) .

This proves the remaining claim (5.13). We have omitted variants A′,B′,C′ ∈ s1 which
will be irrelevant for our subsequent discussion.

It remains to address possible tangencies between level curves λ = λ(α, s) and the
black boundaries of the blocking regions, in the (N1/N, arctan s)-plane. At such tan-
gencies, the emanation/termination behavior of the formal rebel dynamics changes, as
we will illustrate in the next section. For now, we note that such tangencies T,T′

are characterized by unique extrema of λι(α) := λ(α, sι(α)) along the black blocking
boundaries sι(α), ι = 0, 1. Elementary calculations of high school type for the rational
expressions (5.5), (5.7) of λι(α) provide the explicit expressions

T : c = −2(α + 1)/(α + 2) ∈ (−3
2
,−1) ,

α = −2(c+ 1)/(c+ 2) ,

λ = 1
4
(c+ 2)2/(2c+ 3) ;

(5.20)

T′ : c = −2(α + 1)/(2α + 1) ∈ (−2,−1) ,
α = −1

2
(c+ 2)/(c+ 1) ,

λ = 1
4
(c+ 2)2/(2c+ 3) .

(5.21)

See figure 5.4 for an illustration of the tangency point T.

Since we are interested in minority/majority transitions across the white line N1/N =
1
2
, below the black blocking curve s0 , we also determine the values of c where A, . . . ,D,

and T cross α = 1:

α = 1 A B C D T
c −1 −4/3 −5/4 −1 −4/3
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In conclusion we observe crucial changes in the above intersection behavior at the six
critical cubic coefficients c = −2,−3

2
,−4

3
,−5

4
,−1,−1

2
, as announced in (1.19) and as

exemplified in the next section.

6 Results

As announced in (1.19), we illustrate the global heteroclinic dynamics of the 3-cluster
system (2.4), in the limit of large dimension N → +∞. See the skew product system
(3.7), (3.8), and the scaled version (5.2). To represent the seven parameter intervals
which are separated by the six critical cubic coefficients c = −2, −3

2
, −4

3
, −5

4
, −1, −1

2

of (1.19), we successively illustrate the global dynamics for the seven coefficients

(6.1) c = −3, −1.77, −1.37, −1.3, −1.12, −0.75, +1 ;

see figures 6.1–6.8.

We also address those non-blocking regions where, in addition, the driving 2-cluster
dynamics s > 0 of (3.7) has reached an unstable 2-cluster equilibrium s = s∗ > 0
according to section 4. We recall from figures 5.3–5.5 how solid magenta arrows along
level curves of λ = (λ, s) indicate heteroclinic rebellions in s-stable regions. Dashed
magenta arrows indicate s-unstable regions. This leaves two dashed magenta regions
in each of the figures 6.1–6.8.

To enforce s-stability, in regions which are not s-stable originally, according to section
4, we may reverse time in all ODEs. For the coefficients A,B,C in (1.10) this amounts
to a reversal of all signs. In (1.8) and the following sections, we just replace ẋn =
. . . , ṡ = . . . , ẏ = . . . by −ẋn = . . . , −ṡ = . . . , −ẏ = . . . .

In all seven figures we have shaded the regions in the plane (N1/N, arctan(s)) where
heteroclinic rebel orbits between the two large clusters are blocked, according to section
5.

6.1 The case −∞ < c < −2

We begin with the case −∞ < c = −3 < −2 of figure 6.1. There are two s-stable
non-blocked regions, indicated by solid magenta arrows. The dashed magenta arrows
indicate the two s-unstable regions.

The lower s-stable region of solid magenta arrows is located between the lower black
blocking boundary s0 and the right red saddle-node curve. It is split in four by three
separating non-solid yellow level curves. In all four subregions, the cluster N1 wins at
the expense of N3 . The successive heteroclinic dynamics leads to infinite growth of the
2-cluster asynchrony

(6.2) s = (ξ3 − ξ1)/(α + 1) −→ +∞ ,

via a size ratio α which increases asymptotically to N1/N3 = α↗ 1/αc , given by (4.8).
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Figure 6.1: Global dynamics in the plane (N1/N, arctan(s)) for case 6.1, −∞ < c = −3 < −2.
Color coding and legends as in figures 5.3, 5.5. For definition of the intersection points D′,E,F,
see (5.19), (5.14). The shaded region marks blocking of rebel heteroclinic dynamics between the two
large clusters of size ratio α = N1/N3 . Magenta arrows indicate the formal flow on the level sets
of λ = λ(α, s). Solid magenta arrows are used in the s-stable region of the asynchronous 2-cluster
equilibrium s = s∗ > 0. Dashed magenta arrows account for the two s-unstable regions. See text for
further details.

Figure 6.2: Zoom into the upper left s-unstable and s-stable regions of figure 6.1.
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Between the dotted and the dashed yellow separatrix, i.e. for 0 < λ < 1/4, all directed
level curves of λ emanate from the left boundary N1/N = 0 and terminate at α =
1/αc , s = +∞. This means that the heteroclinic rebel dynamics favors the growth
of arbitrarily small clusters (N1, ξ1), “out of the blue”, over the cluster (N3, ξ3), until
the cluster asynchrony blows up, s ↗ +∞, at the maximal sustainable size ratio
α = N1/N3 = 1/αc > 1: from minority to majority.

Between the dashed and the dotdashed yellow separatrixes, i.e. for 1/4 < λ < λ(E) =
−(c+ 1), minority N1 can still become majority, until s blows up. This time, however,
at least a critical minimal size N1 of the smaller cluster is required, which depends
on the value of λ. Indeed that critical size is determined by the realizable value of
α = N1/N3 at the intersection of the level curve of λ with the black blocking boundary
s0 .

Above the dotdashed separatrix, i.e. for λ > −(c + 1) = λ(E), the rebel growth of N1

does not cross the white line N1/N = 1
2

. The cluster size N1 , initiating to the right
of E on the blocking boundary s0 , must exceed N3 from the start. To the right of the
dotted separatrix from F, i.e. for given λ < 0, the minimally required cluster size of N1

is determined by the value α of the cluster ratio N1/N3 on the right red saddle node
curve sminmax corresponding to λminmax = λ.

The upper s-stable region of solid magenta arrows is located in the triangular wedge
above D′, between the left red saddle-node curve sminmax and the upper black blocking
boundary s1 . Rebellions there originate from s1 and decrease α = N1/N3 < 1, until
they terminate at sminmax > 0, where 2-cluster solutions disappear into saddle-node
bifurcations. See the zoom 6.2 of figure 6.1.

Similar remarks apply to the remaining two non-blocking regions which are s-unstable.
The dashed magenta arrows indicate the resulting formal rebel dynamics. The upper
left s-unstable region is bounded below by the black blocking boundary s = s1(α)
and the upper red saddle-node curve s = sminmax(α); see (5.6) and (4.10). In (5.13)
and (5.19) we have denoted their intersection by D′. The two yellow separatrix levels
λ(α, s) = 0, dotted, and λ(α, s) = λ(D′), solid, define three subregions, which are
distinguished by the eventual fate of the heteroclinic rebel dynamics. The rebellion
may terminate at the left boundary α = 0, at the black blocking boundary s1(α) to the
left of D′, or at the left red saddle-node cluster configuration sminmax(α) to the right
of D′. In all three cases, the ongoing decay of α = N1/N3 originates from asynchrony
s = +∞, at finite size ratio α = αc < 1.

The lower right region of dashed magenta rebel dynamics does not involve unbounded
asynchrony, for fixed λ. All rebellions favor N1 over N3 , this time, and terminate at
α = N1/N3 =∞ alias N3 = 0, N1 = N . Heteroclinic rebels defect from N3 to the larger
cluster N1 . Defection originates from the red saddle-node boundary sminmax(α) > 0,
to the right of F, for some λ-dependent minimal α = N1/N3 > 1. Note that majority
N1 > N3 prevails, because the white line N1/N = 1

2
is not crossed.

25



Figure 6.3: Global dynamics in the plane (N1/N, arctan(s)) for case 6.2, −2 < c = −1.77 < −3/2.
For definition of the tangency T′ between the upper solid black blocking boundary and the level set
λ(α, s) = λ(T′); see (5.21).

6.2 The case −2 < c < −3/2

We address the case −2 < c = −1.77 < −3/2 of figure 6.3 next. The description is
identical to the previous case c = −3, in the original s-stable regions with solid magenta
arrow, and in the lower right s-unstable region with dashed arrows. Note however the
intersection point D′ and the tangency point T′ on the upper black blocking boundary
s1 . These points only affect level sets in the upper left s-unstable region of dashed
magenta rebel arrows. The corner point D′ and its level set λ(α, s) = λ(D′) retain
their previous significance. See in particular the previous zoom in figure 6.2. However,
the new tangency point T′ comes with a level set λ(α, s) = λ(T′) which consists of two
branches. Only above λ = λ(T′) do we still observe termination at N1 = 0, originating
from asynchrony s = +∞ at α = αc . Below the left branch of λ = λ(T′), such rebellion
originates from the blocking boundary, instead. Below the right branch, the rebellion
still originates from s = +∞, α = αc as before, but terminates at a minimal cluster
ratio α = α(λ) > 0.

6.3 The case −3/2 < c < −4/3

The case −3/2 < c = −1.37 < −4/3 of figure 6.4 features only a single s-stable
region of solid magenta arrows, and two s-unstable time-reversed regions of dashed
magenta arrows. The only s-stable region, lower triangular between the lower black
blocking boundary s0 and the right red saddle-node curve, has now detached from the
singular tip s = +∞ at α = 1/αc . The new tip is at D; see (5.12) and (5.18). Along
s0 , the intersection points A,B,C have appeared, with the yellow λ-levels λ = 0 =
λ(F)(dotted), λ = 1/4 (dashed) and λ = −(c + 1) = λ(E) (dotdashed), respectively.
See (5.9)–(5.10) and (5.15)–(5.17). The three yellow separatrices define four subregions.
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Figure 6.4: Global dynamics in the plane (N1/N, arctan(s)) for case 6.3, −3/2 < c = −1.37 < −4/3.

Figure 6.5: Global dynamics in the plane (N1/N, arctan(s)) for case 6.4, −4/3 < c = −1.3 < −5/4.
See also figure 5.3.
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For λ < 0, i.e. in the triangular subregion ADF, rebellions start from the red saddle-
node curve DF and terminate at the black blocking boundary segment AD. In the
pentagonal subregion 0 < λ < 1

4
, all rebellions start from “blue sky”, at α = N1/N3 =

0, with tiny N1 . They gain majority as they cross the dashed white break-even line
N1 = N3 , and terminate at the black blocking boundary segment AB. For 1

4
< λ <

−(c+ 1) = λ(E), rebellions still gain majority across the white line, but they start on
the black blocking boundary s0 to the left of E and terminate on the segment BC of
s0 . The black blocking segment CE to the right of E, finally, exhibits a new tangency
T with the level curves of λ. For −(c+ 1) = λ(E) < λ < λ(T) this leads to rebellions,
from N3 to increasing N1 > N3 already in majority, which start and terminate at the
black blocking boundary: from ET to CT. Except for the location to the right of the
white break-even line, the dynamics follows the zoom in figure 5.4.

The upper region of dashed magenta arrows has simplified: all rebellions now originate
from the black blocking boundary s1 , with finite α and s, and terminate at α = 0.
The lower dashed magenta arrow region, likewise, terminates at α = +∞ , N3 = 0.
For λ < λ(D), the rebellions originate from black blocking s0 and, for λ(D) < λ < 0,
at saddle-node (red).

6.4 The case −4/3 < c < −5/4

The case −4/3 < c = −1.3 < −5/4, of figure 6.5 has been prepared in section 5; see
figure 5.3. The two regions of dashed magenta arrows correspond to the previous case,
verbatim.

The s-stable triangular region of solid magenta arrows looks quite similar to figure 6.4,
except for the position of the dashed white line EF of equal parity N1 = N3 . The
segment CT on the black blocking boundary has in fact moved from the right of E
to the left of E, i.e. from size ratios α > 1 to α < 1. Of the four s-stable regions
separated by the three yellow level curves λ = 0, 1

4
,−(c+1), this only effects the region

−c + 1 < λ < λ(T) which now features a minority N1 , still growing, rather than a
majority. Rebellions lead from CT to ET, this time.

6.5 The case −5/4 < c < −1

For −5/4 < c = −1.12 < −1, as in figure 6.6, the situation in the two regions of
dashed magenta arrows remains the same, qualitatively, as in the two previous figures
6.4 and 6.5. In the remaining unique s-stable region of solid magenta arrows, the
dotdashed yellow level λ = −(c+ 1) = λ(E) has dropped below the dashed yellow level
λ = 1

4
, as c increased through −5/4. The region of rebellion from “blue sky” minority

N1 = 0 to majority N1 > N3 , across the dashed white line EF, therefore requires
0 < λ < −(c + 1), now. Termination occurs at the black blocking segment EA of s0 .
The second intersection point C of s0 with the yellow level λ = −(c + 1) = λ(E) has
disappeared. The region 1

4
< λ < λ(T) now features growth of the minority N1 from

the black blocking segment of s0 on the left of T to TB.
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Figure 6.6: Global dynamics in the plane (N1/N, arctan(s)) for case 6.5, −5/4 < c = −1.12 < −1.

Figure 6.7: Global dynamics in the plane (N1/Nα, arctan(s)) for case 6.6, −1 < c = −0.75 < −1/2.
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Figure 6.8: Global dynamics in the plane (N1/N, arctan(s)) for case 6.7, −1/2 < c = +1 < +∞.

6.6 The case −1 < c < −1/2

The case −1 < c = −0.75 < −1/2 of figure 6.7 has also been prepared in section 5;
see figure 5.5. The upper left region of time-reversed dashed magenta arrows remains
the same, qualitatively, as in figures 6.4–6.6. The original s-stable region of solid
magenta arrows is now contained in the region N1/N to the left of the dashed white
line N1 = N3 of equal parity. Thus N1 is, and remains, in minority N1 < N3 . The
only yellow separatrix λ = λ(D) > 0 (solid) highlights the intersection D of the lower
black blocking boundary s0 with the only remaining red saddle-node curve sminmax ;
see (5.12) and (5.18). All rebellions start from “blue sky” i.e. at vanishing N1 . In the
subregion 0 < λ < λ(D) they terminate at the red saddle-nodes. In the complementary
subregion λ(D) < λ < 1

4
, they terminate at the black blocking boundary.

The second time-reversed region of dashed magenta arrows, on the right, is now
subdivided into three subregions by the two yellow separatrices AF of λ = 0 (dot-
ted) and λ = −(c + 1) = λ(E) (dotdashed). For λ(D) > λ > λ(A) = 0, the
longer cluster N3 decays by heteroclinic rebellions which proceed from the segment
AD of the black blocking boundary s0 to the red saddle-nodes, where N3 is still in
majority. For λ < λ(A) = 0, rebellions terminate at N3 = 0. In the subregion
λ(A) = 0 > c > −(c + 1) = λ(E) the majority cluster N3 from the black blocking
segment AE of s0 crosses the dashed white line of equal parity until it terminates as
minority. For λ(E) = −(c + 1) > λ, the cluster N3 remains a minority, originating
from the black blocking segment of s0 , to the right of E, at a finite value of s.

6.7 The case −1/2 < c < +∞

The final case is −1/2 < c = 1 < +∞, as in figure 6.8. As for all c > −3/2 we
obtain a single s-stable region, with solid magenta arrows, and two time-reversed s-
unstable regions with dashed magenta arrows; see figures 6.4–6.7. The upper left

30



dashed magenta region remains unchanged. The solid magenta region has lost D
from its boundary: all rebellions originate from red saddle-nodes and terminate at
N1 = 0 , α = 0, with N1 remaining in minority.

The wedge of the second dashed magenta region, on the right, now reaches left all the
way to the tip at α = 0, s = 1

2
where λ = 1

4
. The two yellow level curves λ = 0 = λ(A)

and λ = −(c + 1) = λ(E) < −1
2

divide the region into three subregions, just as in the
previous case −1 < c < −1/2 of figure 6.7. The only difference, now, is that rebellions
for 0 < λ < 1

4
originate from anywhere on the black blocking boundary, to the left

of A, i.e. at any size ratio 0 < α = N1/N3 < α(A) = 1/(c + 2) < 2/3; not just at
0 < −2c − 1 = α(D) < α < α(A) = 1/(c + 2) < 1 bounded away from α = 0, as
they did in the previous case. The two other subregions of λ < 0, as before, show how
the cluster N3 can decay to N3 = 0 from the maximal value of N3/N = 1− α/(α + 1)
on the black blocking boundary, which is sustainable at the given level of λ < 0. If
we reverse time, to make this s-unstable region s-stable, then the growth of N3 = 0
to the maximally sustainable N3 reveals the limitations of rebel dynamics defecting to
minority.

7 Example: Stuart-Landau oscillators with global coupling

In this section, we study N globally coupled, identical Stuart-Landau oscillators

(7.1) Ẇn = (1− (1 + iγ)|Wn|2)Wn + β · (〈W 〉 −Wn) .

Here Wn ∈ C indicate phase and amplitude of the n-th oscillator, n = 1, . . . , N . We
consider real amplitude dependence γ of individual periods, complex coupling β ∈ C,
and we abbreviate the average 〈W 〉 := 1

N

∑
Wn , as before. Note SN -equivariance of

(7.1) under the action analogous to (1.1).

For a background and motivation we recall how (7.1) often serves, in physics, as a
“normal form” for oscillatory systems close to the onset of oscillation and under the
influence of a linear coupling through the mean field [GMK08]. This normal form has
been established to be a good approximation in a multitude of contexts from various
disciplines, whether it be in physics, chemistry, biology, neuroscience, social dynam-
ics, or engineering. For an overview see, e.g. [PRK03, PR15] or references 1-15 in
[KGO15]. Our motivation to study (7.1) is to gain a deeper understanding of the
dynamics of oscillatory electrochemical systems. Indeed global, linear coupling often
controls the evolution of the electrostatic potential of the working electrode, a cru-
cial dynamic variable in electrochemical systems [WKH00, Kri01, PLK04, VBBK05,
MGMK09, KK&al14, SZHK14, SK15, PH&al17, LSMK18, NKV19, HGK19]. The
global coupling originates from the electric control of the device: any potential drop
in the electrolyte or the external electric circuit is fed back to the evolution of the
electrode potential at any location. Yet, there are many other situations where the
dynamics of the electric potential is governed in almost the same manner as in electro-
chemical systems. Examples include semiconductor devices [Sch01], gas discharge tubes
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[PBA10], or arrays of Josephson junctions [BVB97]. Along with these numerous appli-
cations go various theoretical studies of the globally coupled Stuart-Landau ensemble
[NK93, NK94, NK95, HR92, SF89, MS90, MMS91, DN04, DN06, KGO15, KHK19].

Specifically, we consider bifurcations from the globally synchronous periodic solution

(7.2) Wn(t) = exp−(iγt)

of amplitude 1 and minimal period 2π/γ. Somewhat unconventionally, we rewrite (7.1)
in “polar coordinates” Zn = Rn + iΨn via Wn = exp(Zn) as

(7.3) Żn = Ẇn/Wn = 1− (1 + iγ)|Wn|2 + β(−1 + 1
N

N∑
k=1

Wk/Wn) .

We now invoke the notation (1.9) and define

(7.4)

R := 1
N

∑
Rn , rn := R̃n = Rn −R,

Φ := 1
N

∑
Φn , ϕn := Φ̃n = Φn − Φ,

Z := R + iΦ, zn := rn + iϕn , z = (zn)Nn=1 ,

to derive

ϕ̇n = −γ e2Rẽ2rn + Im(β〈ez 〉ẽ−zn ),(7.5)

ṙn = −e2R ẽ2rn + Re(β〈ez 〉ẽ−zn ),(7.6)

Ṙ = 1− e2R 〈e2r 〉+ Re(β(〈ez 〉〈e−z 〉 − 1)) ,(7.7)

and the average phase

(7.8) Φ̇ = −γe2R〈e2r〉+ Im(β(〈ez 〉〈e−z 〉 − 1)) .

Here we have slightly extended the notation (1.9) to include

(7.9)

〈ez〉 := 1
N

N∑
n=1

ezn = 1
N

N∑
n=1

∞∑
m=0

1
m!
zmn =

∞∑
m=0

1
m!
〈zm〉 ,

ẽzn := ezn − 〈ez〉 =
∞∑
m=0

1
m!

(zmn − 〈zm〉) =
∞∑
m=0

1
m!
z̃mn .

The globally synchronous solution (7.2) becomes the trivial equilibrium z = 0, R = 0 of
(7.5)–(7.7), in this notation. The average phase Φ(t) does not appear in these ODEs,
due to S1-equivariance of the original Stuart-Landau system (7.1) under uniform phase
shifts. We will therefore ignore the average phase Φ(t), henceforth. We only keep in
mind how equilibria of z, R, and heteroclinic orbits between them, actually indicate
periodic orbits and their heteroclinic connections, via the skew product structure of
Φ̇ = . . ., driven by the Φ independent dynamics of z, R, only.

Our task, in the present section, is the derivation of the reduced flow (1.10), i.e.

(7.10) ẋn = µ+xn + Ax̃2n +Bx̃3n + C〈x2〉xn + . . .
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in a center manifold of the trivial equilibrium z = 0, R = 0 of the system (7.5)– (7.7),
at a zero eigenvalue µ+ of the linearization. See for example [Carr, ChHa82, Van89]
for a background on center manifolds.

An outline of this standard procedure is as follows. We replace zn = rn + iϕn ∈ C
by suitable linear real coordinates (xn , yn) such that the eigenspace of the mandatory
eigenvalue µ+ = 0 is given by y = 0, R = 0. The remaining eigenvalues will be µ− < 0,
for x = 0, R = 0, and µ0 = −2, for x = y = 0. Since 〈z〉 = 0, by construction of

zn = R̃n + iΦ̃n , we will inherit 〈x〉 = 0 = 〈y〉, i.e. x,y ∈ X0 will realize the standard
representation of SN ; see (1.1), (1.7). Since the SN -invariant center manifold can be
written as a graph of (y, R) over x, tangent to the eigenspace of µ+ = 0 at the trivial
equilibrium, truncation to second order yields

yn = ax̃2n + . . . ,(7.11)

R = b〈x2〉+ . . . ,(7.12)

with suitable real coefficients a, b calculated below. Substitution of (7.11), (7.12) into
the ODE ẋn = . . . with vanishing linear part then allows us to determine the coefficients
A,B,C of the reduced flow (7.10) in the center manifold, up to third order in x, as
required for our analysis of (1.10), (1.8). We can then invoke the results of sections
1–6 to detect rebel heteroclinic dynamics between periodic 2-cluster solutions of the
globally coupled Stuart-Landau system (7.1). See [SEC03] for another example in a
Darwinian setting.

To substantiate the above outline we start from the following linear change of coordi-
nates:

(7.13)
2dxn : = −rn + d+1

γ′
ϕn , rn = (1− d)xn + (1 + d)yn ,

2dyn : = +rn + d−1
γ′
ϕn , ϕn = γ′xn + γ′yn .

for n = 1, . . . , N . The system on the right defines the inverse of the system on the left.
Here d abbreviates the discriminant root

(7.14) d :=
√

1− β2
I − 2γβI > 0 ,

writing the real and imaginary parts of the complex linear coupling as β = βR + iβI .
Of course we assume positive discriminant, i.e.

(7.15) β2
I + 2γβI < 1 .

The coefficient γ′ in (7.13) is defined as

(7.16) γ′ := βI + 2γ .

The two real eigenvalues of the linearization of (7.5), (7.6) at the trivial equilibrium
z = 0, R = 0 are

(7.17) µ± = −(βR + 1)± d .
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Note that each of the real eigenvalues µ− < µ+ is of algebraic and geometric multiplicity
N − 1. Indeed the eigenspaces x = 0, R = 0 and y = 0, R = 0 are each isomorphic to
the standard irreducible representation X0 of SN . The requisite eigenvalue µ+ = 0, at
bifurcation, is picked such that µ− < 0 = µ+ and the algebraically simple eigenvalue
µ0 = −2, in the synchrony direction of R, ensure exponential stability of the reduced
flow on the center manifold of µ+ . We collect some relations among the available
coefficients:

(7.18)

βR = d− 1 ,

γ′βI = (βI + 2γ)βI = 1− d2 = −(βR + 2)βR ,

β = (d− 1)(1− i(d+ 1)/γ′) .

Indeed, the first line follows from µ+ = 0 and (7.17). The second line uses definition
(7.16) of γ′ , the definition (7.14) of d, and the first line. The third line follows from
the first and the second. In summary, (7.16) and (7.18) allow us to express the three
free real parameters γ, βR, βI of (7.1) by the two real parameters γ′ and d, at µ+ = 0,
with the only remaining constraint d > 0 6= γ′. We will therefore express the remaining
coefficients a, b of (7.11), (7.12), and A,B,C of (7.10) in terms of γ′ and d.

To calculate a, b we use existence and Ck differentiability of the center manifold, for
any k > 0. See [Van89]. We first expand the transformed ODE
(7.19)

0 + . . . = 2dy′n(x)ẋ = 2dẏn = ṙn + d−1
γ′
ϕ̇n =

= −(1 + (λ− 1) γ
γ′

)e2Rẽ2rn + Re
(

(1− id−1
γ′

)β(〈ez〉ẽ−zn)
)

=

= µ−yn + . . . .

Here we have substituted (7.6), (7.5) on the right, after the transformation (7.13). On
the left, we have inserted the quadratic expansion (7.11). Note that ẋ = µ+x + . . .
with µ+ = 0 is at least quadratic. Moreover, tangency of the center manifold to the
eigenspace yn = R = 0 implies y′n(0) = 0. Therefore, the left hand side of (7.19) starts
at (ommited) cubic order. Substitution of (7.13), (7.18), and the expansion (7.11) on
the right side of (7.19), yield the result

(7.20) a = 1−d
8γ′2d2

(
γ′2 + (d− 1)2

) (
γ′2 + 3(d2 − 1)

)
,

by comparison of quadratic coefficients. For R, we analogously obtain

(7.21) 0 + . . . = R′(x)ẋ = Ṙ = 1− e2R〈e2r〉+ Re
(
β(〈ez〉〈e−z〉 − 1)

)
,

with a left hand side of at least cubic order. Substitutions and comparison of second
order coefficients yield

(7.22) b = 1
2
(1− d)

(
γ′2 + (d− 1)(d+ 5)

)
.

To calculate the reduced flow ẋn = fn(x) in the center manifold, to order k ≥ 2, it is
always sufficient to expand the center manifold itself to order k− 1. To determine the
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quadratic coefficient A and the cubic coefficients B,C in (1.10), we expand

(7.23)

2dẋn =− ṙn + d+1
γ′
ϕ̇n =

=−
(
−1 + (d+ 1) γ

γ′

)
e2Rẽ2rk + Re

(
−1− id+1

γ′
β(〈ez〉ẽ−zk)

)
=

=µ+xn + Ax̃2n +Bx̃3n + C〈x2〉xn + . . .

to cubic order. We use the substitutions (7.13) and (7.18) and insert the quadratic
expansions (7.11), (7.12) to finally obtain, with the prerequisite stamina,

A = d−1
4γ′2d

(
γ′2 + (d+ 1)2

) (
γ′2 − 3(d− 1)2

)
;(7.24)

B = −1
d

(
d−1
4γ′2d

)2 (
γ′2 + (d+ 1)2

) (
γ′2 + (d− 1)2

)
·

·
(
(γ′ + d)2 + 2d2 − 3

) (
(γ′ − d)2 + 2d2 − 3

)
;

(7.25)

C = 1
d

(
d−1
4γ′2d

)2(
γ′8−4(2d3 − 7d2 + 1)γ′6 − 2(8d5 + d4 − 56d3 + 22d2 + 1)γ′4−

−4(d+ 1)3(d− 1)2(2d2 + 3d− 3)γ′2 + 9(d2 − 1)4
)
.

(7.26)

In particular, scaling (1.11) for nonzero A,B and truncation to cubic order lead to the
cubic normal form (1.8) studied in the previous sections. The remaining cubic coeffi-
cient c = C/B, according to (1.12), is then given by the long but explicit expression

(7.27) c = γ′8−4(2d3−7d2+1)γ′6−2(8d5+d4−56d3+22d2+1)γ′4−4(d+1)3(d−1)2(2d2+3d−3)γ′2+9(d2−1)4
−(γ′2+(d+1)2)(γ′2+(d−1)2)((γ′+d)2+2d2−3)((γ′−d)2+2d2−3) .

Our results are summarized in the contour plot of figure 7.1. First we note that the
rational function c = c(γ′, d) of (7.27) is even in γ′. We can therefore omit negative
γ′ and only consider d, γ′ > 0. We recall the expressions (7.14) and (7.18) for d
and γ′, in terms of the original coefficients γ ∈ R and β ∈ C of the coupled Stuart-
Landau system (7.1). The coefficient γ regulates the soft-/hard-spring characteristic
of the individual Stuart-Landau oscillator, i.e. the monotone dependence of period on
amplitude. Complex linear all-to-all coupling is regulated by β. Colors in figure 7.1
indicate the seven intervals of c ∈ R which are complementary to the six critical levels

(7.28) c = −2, −3
2
, −4

3
, −5

4
, −1, −1

2
,

as identified in section 5. We have subdivided the intervals c < −2 and c > −1/2, for
clarity.

For further illustration we briefly relate our present results to the discussion of the
2-cluster singularity in [KHK19]. By definition, the 2-cluster singularity refers to the
the bifurcation point λ = 0 of an odd nonlinearity A = 0 in the dynamics (1.10) on the
center manifold. The very value A = 0, however, is conspicuously absent in our scaled
asymmetric version (1.8), due to the singular scaling (1.11) with τ = B/A2. From
the outset, we note that any analysis of 2-cluster equilibria is subsumed as N2 = 0
in our present setting. Therefore such results hold for all N , and are not restricted
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Figure 7.1: Level sets of the cubic coefficient c = c(γ′, d) in the cubic SN normal form (1.8), as a
function of the positive parameters γ′ and d. See (7.27). Since c(γ′, d) = c(−γ′, d) is quadratic in γ′,
we only plot positive γ′, d. See (7.14) and (7.18) for expressions of d and γ′ in terms of the original
coefficients γ ∈ R, of period-amplitude dependence, and β ∈ C, of complex linear coupling, in the
Stuart-Landau setting (7.1). The singular set c = ±∞, alias B = 0, is indicated by the white crescent.
For resulting dynamics in the colored intervals of c see the representative figures 6.1– 6.8 of section 6.
The white dot at d = 3, γ′ = 2

√
3 indicates the 2-cluster singularity c = 1 of fig. 6.8.

to any asymptotics of large N . This extends to the bifurcation curves of rebel 3-
cluster stationary solutions, at the blocking curves. Indeed, the defining kernels of the
linearization are independent of the size of the bifurcating cluster; see (4.39) and (4.40)
in [Elm01].

We can easily determine the 2-cluster singularities in the parameters γ′, d of figure 7.1.
Indeed, A = 0 in our derivation (7.24) is equivalent to the pair of straight lines

(7.29) γ′2 = 3(d− 1)2 .

Quite remarkably, insertion of (7.29), to eliminate γ′, collapses the formidable expres-
sion (7.27) of the cubic coefficient c in the scaled center manifold dynamics (1.8), along
these lines, to become

(7.30) c = d− 2 .

Conversely, for given c > −2, we can now invoke (7.29), (7.18), and (7.16), successively,
to determine the parameters of the 2-cluster singularity as

(7.31) d = c+ 2, γ′ =
√

3 (c+ 1) .

Since (7.29) is in fact quadratic, we may in fact replace any occurrence of
√

3, here and
below, by −

√
3. For brevity, we will only address the positive sign.

At λ = 0, relations (7.18) then determine the original parameters β, γ as

β = (c+ 1)− i 1√
3

(c+ 3)(7.32)

γ = 1√
3
(2c+ 3) .(7.33)
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Insertion of (7.31) in (7.25) and (7.26), respectively, determines the modest expressions

B = −8
3
(c+ 1)2(c2 + 3c+ 3)/(2 + c) ,(7.34)

C = Bc .(7.35)

Of course we may just as well invoke (7.33), anytime, to alternatively express all
other parameters in terms of the soft/hard spring constant γ of (7.1), at the 2-cluster
singularity.

In the language of section 6, each size ratio α = N1 : N3 gives rise to up to three
particular nonzero bifurcation values of the parameter λ in the scaled center manifold
dynamics (1.8): the red saddle-node value λminmax of (4.11) and the two blocking
values λι , ι = 0, 1 of (5.5), (5.7). To recover the meaning for the full set of coefficients
λ,A,B,C in the general, unscaled center manifold setting (1.10), we just have to
revert the scaling (1.11). The parameter values λ in (1.10), which correspond to each
of the above reference values λι, ι ∈ {minmax, 0, 1}, for fixed α, are then given by the
asymptotic parabolas

(7.36) λ = (λι(α)/B)A2 + . . . .

Higher order terms in A go beyond our third order truncation of the flow (1.10) in
the center manifold, and also account for dependencies of the coefficients A,B,C on
λ. This shows how all bifurcation curves emanate from the 2-cluster singularity at
A = 0, λ = 0, with horizontal tangent and curvatures given by the one remaining
coefficient c and the size ratios α.

See [KFHK20] for numerical illustrations of the 2-cluster singularity, in the special
case of N = 16 Stuart-Landau oscillators (7.1) with γ = 2. Specifically, size ratios
α = N1/(N − N1), N1 = 1, . . . , 8 are addressed there. By (7.33), the value γ = 2
corresponds to the simplest case c =

√
3 − 3/2 > −1/2 of section 6, as illustrated

for c = 1 in fig. 6.8. The complex value of the coupling constant β at the 2-cluster
singularity follows from (7.32).

In conclusion, we have gone beyond the discussion of 2-cluster equilibria and their
stability. In fact, we have indicated rebel heteroclinic dynamics between them, in the
limit of large N . For each of the seven complementary intervals of the cubic coefficient
c in the center manifold dynamics (1.8), we have represented the resulting heteroclinic
rebel dynamics of section 5, between the two large clusters (N1 , ξ1) and (N3 , ξ3), in
figures 6.1–6.8 of section 6, respectively. Since N → +∞ is finite, in practice, we have
to interpret these figures on the grid of rational values α/(α + 1) = N1/N , of course,
for cluster sizes N1 = 0, . . . , N . See figures 5.1, 5.2 for the appropiate interpretation
of heteroclinic rebel transitions. All seven cases admit 2-cluster singularities. Indeed,
even case 6.1, c < −2, of negative 2-cluster singularity discriminants d = c+ 2 occurs,
albeit at the expense of a repelling center manifold with transverse eigenvalue µ− =
−2(c + 2) > 0; see (7.17). In the setting (7.1) of coupled Stuart-Landau oscillators,
this establishes and explains the transient rebel dynamics of single oscillators between
the two large clusters of synchronization, as observed by [KHK19].
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[GMK08] V. Garćıa-Morales and K. Krischer. Normal-form approach to spatiotemporal
pattern formation in globally coupled electrochemical systems. Phys. Rev. E
78 (2008), 057201.

[GoSt86] M. Golubitsky and I. Stewart. Singularities And Groups in Bifurcation Theory
2. Springer-Verlag, New York 1986.

[GoSt02] M. Golubitsky and I. Stewart. The Symmetry Perspective. Birkhäuser, Basel
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